1. Which formula is an empirical formula?		8. The gram-formula mass of (NH4)2CO3 is		
A) CH4	B) C ₂ H ₆	A) 46.0 g	B) 64.0 g	
$C) C_{3H6}$	D) C4H10	C) 78.0 g	D) 96.0 g	
2. Given the formula for a compound:		9. What is the total number of moles of sulfur atoms in 1 mole of Fe ₂ (SO ₄) ₃ ?		
O II		A) 1 B) 15	C) 3 D) 17	
		10. What is the total mass in grams of 0.75 mole of SO ₂ ?		
н-й й-н		A) 16 g B) 24 g C) 32 g D) 48 g		
Ċ		11. What is the total mass of iron in 1.0 mole of Fe ₂ O ₃ ?		
II O		A) 160 g C) 72 g	B) 112 g D) 56 g	
Which molecular formula and empirical formula represent this compound?		12. A compound has an empirical formula of HCO₂ and a molecular mass of 90. grams per mole. What is the		
A) C ₂ HNO ₂ and CHN	0	molecular formula of	f this compound?	
B) C_2 HNO ₂ and C_2 HI	NO ₂	A) HCO	B) H ₂ C ₂ O ₄	
C) $C_4H_2N_2O_4$ and C_1	INU A HNO A	C) H4C4O8	D) H6C6O12	
3 An example of an emp	irical formula is	13. What is the molecular formula of a compound that		
A) C.U.		has a molecular mass of 92 and an empirical formula		
A) $C4H_{10}$ C) $HC_2H_3O_2$	D) CH ₂ O	$(1) NO_2$	\mathbf{B} N ₂ O ₄	
4 A compound has a ma	b) CH2O	C) N3O6	D) N4O8	
4. A compound has a molecular mass of 54 and an empirical formula of C_2H_3 . What is the molecular formula of the compound?		 14. What is the percent composition by mass of hydrogen in NH4HCO3 (gram-formula mass = 79) 		
A) C ₂ H ₃	B) C4H6	grams/mole)?		
C) C5H8	D) C6H10	A) 5.1%	B) 6.3%	
5. What is the mass of 1.	5 moles of CO_2 ?	C) 10.%	D) 50.%	
A) 66 g B) 44 g C) 33 g D) 29 g		15. The percent composition by mass of magnesium in		
6. What is the gram-formula mass of $Fe(NO_3)_3$?		MgBr ₂ (gram-formula mass = 184 grams/mole) is equal to		
A) 146 g/mol	B) 194 g/mol	A) $\frac{24}{184} \times 100$	B) $\frac{160.}{184} \times 100$	
C) 214 g/mol	D) 242 g/mol	C) $\frac{184}{24} \times 100$	D) $\frac{184}{160.} \times 100$	
7. The gram-formula mas	ss of NO ₂ is defined as the mass			
A) one mole of NO ₂				
B) one molecule of NO2C) two molecules of NO				
D) two molecules of NO	10			

16. Given the balanced equation representing a reaction:

 $K_2CO_3(aq) + BaCl_2(aq) \rightarrow 2KCl(aq) + BaCO_3(s)$

Which type of reaction is represented by this equation?

A) synthesis	B) decomposition
C) single replacement	D) double replacement

17. Given the balanced equation representing a reaction:

 $Zn(s) + H_2SO_4(aq) \rightarrow ZnSO_4(aq) + H_2(g)$

Which type of reaction is represented by this equation?

- A) decomposition
- B) double replacement
- C) single replacement
- D) synthesis
- 18. In which type of reaction do two or more substances combine to produce a single substance?
 - A) synthesis
 - B) decomposition
 - C) single replacement
 - D) double replacement
- 19. Given the balanced equation:

 $2KClO_3 \rightarrow 2KCl + 3O_2$

Which type of reaction is represented by this equation?

- A) synthesis
- **B)** decomposition
- C) single replacement
- D) double replacement

20. Base your answer to the following question on the information below.

A 1.0-gram strip of zinc is reacted with hydrochloric acid in a test tube. The unbalanced equation below represents the reaction.

 $\underline{Zn(s)} + \underline{HCl(aq)} \rightarrow \underline{H2(g)} + \underline{ZnCl_2(aq)}$

Balance the equation for the reaction of zinc and hydrochloric acid, using the smallest whole-number coefficients.

- 21. Which chemical equation is correctly balanced?
 A) H₂(g) + O₂(g) → H₂O(g)
 B) N₂(g) + H₂(g) → NH₃(g)
 - C) $2NaCl(s) \rightarrow Na(s) + Cl_2(g)$
 - D) $2KCl(s) \rightarrow 2K(s) + Cl_2(g)$
- 22. Given the unbalanced equation:

 $_$ Fe₂O₃ + $_$ CO \rightarrow $_$ Fe + $_$ CO₂

When the equation is correctly balanced using the *smallest* whole-number coefficients, what is the coefficient of CO?

A) 1 B) 2 C) 3 D) 4

23. Given the unbalanced equation:

 $__Mg(ClO_3)_2(s) \rightarrow __MgCl_2(s) + __O_2(g)$

What is the coefficient of O₂ when the equation is balanced correctly using the *smallest* whole number coefficients?

	A) 1	B) 2	C) 3	D) 4	
24.	Given the unbalanced equation:			28. Given the balanced equation:		
	$ \underline{\qquad} Al(s) + \underline{\qquad} O_2(g) \rightarrow \underline{\qquad} Al_2O_3(s) $ When this equation is correctly balanced using smallest whole numbers, what is the coefficient of O 2(g)?			2 C ₄ H ₁₀ (g) + 13 O ₂ (g) →8 CO ₂ (g) + 10 H ₂ O(g) What is the total number of moles of O ₂ (g) that must react completely with 5.00 moles of C ₄ H ₁₀ (g)? A) 10.0 B) 20.0 C) 26.5 D) 32.5 29. Given the reaction: 2 C ₂ H ₆ + 7 O ₂ → 4 CO ₂ + 6 H ₂ O What is the total number of moles of CO ₂ produced by the complete combustion of 5.0 moles of C ₂ H ₆ ?		
25.	A) 6 B) 2 C) 3 D) 4 Given the balanced equation representing the reaction between methane and oxygen: $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ According to this equation, what is the mole ratio of oxygen to methane?					
			A) C) 30. Giv	A) 1.0 moleB) 2.0 molesC) 5.0 molesD) 10. moles30. Given the equation:		
26	(A) $\frac{2 \text{ grams CH}_4}{2 \text{ grams CH}_4}$ (C) $\frac{2 \text{ grams O}_2}{1 \text{ gram CH}_4}$ (Given the balanced)	D) $\frac{2 \text{ m}}{1 \text{ m}}$	$\frac{\text{oles } C\bar{H}_4}{\text{oles } O_2}$ $\frac{O_2}{O_2} = CH_4$ presenting a reaction:	Wh	$H_2(g) + Cl_2(g) \rightarrow$ at is the total number of total number of the total number of total number of the total number of to	→ 2 HCl(g) mber of moles of HCl(g)
20.	F ₂ (g) + H ₂ (g) \rightarrow 2H What is the mole rareaction?	IF(g) tio of H2(g)	to HF(g) in this	pro con A) C)	duced when 3 m sumed? 5 moles 3 moles	oles of H ₂ (g) is completely B) 2 moles D) 6 moles
	A) 1:1 B) 1:2 C) 2:1 D) 2:3		31. What is the chemical formula for lead(IV) oxide?			
27.	. Given the balanced equation: $2C + 3H_2 \rightarrow C_2H_6$ What is the total number of moles of C that must		A) C) 32. Wh	PbO2 Pb2O at is the chemica	B) PbO4D) Pb4Oal formula for sodium sulfate?	
	completely react toA) 1.0 molC) 3.0 mol	produce 2.0 B) 2.0 D) 4.0	oduce 2.0 moles of C ₂ H ₆ ? B) 2.0 mol D) 4.0 mol	A) C) 33. The A) C)	Na2SO3 NaSO3 e chemical formu Ni2Br N2Br	 B) Na2SO4 D) NaSO4 Ila for nickel (II) bromide is B) NiBr2 D) NBr2

34.	Which is the formula for the compound that forms when magnesium bonds with phosphorus?		37. The correct chemical formula for iron(II) sulfide is			
				A) FeS	B) Fe ₂ S ₃	
	A) Mg ₂ P	B) MgP ₂		C) FeSO ₄	D) $Fe_2(SO_4)_3$	
	C) Mg ₂ P ₃	D) Mg ₃ P ₂	38.	38. Which is a binary compound?		
35.	35. Which formula represents copper(I) oxide?			A) CaCl ₂	В) КОН	
	A) CuO	B) CuO ₂		C) NaNO ₃	D) MgSO4	
	C) Cu ₂ O	D) Cu ₂ O ₂	39.	What is the correct form	nula for ammonium	
36.	6. Which formula represents lead(II) chromate?		carbonate?			
	A) PbCrO4	B) Pb(CrO ₄) ₂		A) NH4(CO3)2	B) NH4CO3	
	C) Pb2CrO4	D) $Pb_2(CrO_4)_3$		C) (NH4)2(CO3)2	D) (NH4)2CO3	
		•				

Answer Key Unit 3 Moles Practice Test

1. 34. D Α 35. С 2. **D**___ 3. Α D 36. B 37. Α 4. 38. 5. Α Α 39. D 6. _**D**_ 7. Α 8. D 9. С 10. D 11. B 12. B 13. B 14. B 15. Α 16. D C 17. 18. Α 19. В 20. Answer: Zn(s) + _2_HCI(aq) \rightarrow $H_2(g) + _____$ $\overline{ZnCl_2}(aq)$ D 21. 22. _**C**____ 23. С 24. C D 25. 26. В 27. _**D**_ 28. _**D**_ 29. **D**___ 30. D 31. Α 32. B 33. В