1. Which formula is an empirical formula?
A) CH_{4}
B) $\mathrm{C}_{2} \mathrm{H}_{6}$
C) $\mathrm{C}_{3} \mathrm{H}_{6}$
D) $\mathrm{C}_{4} \mathrm{H}_{10}$
2. Given the formula for a compound:

Which molecular formula and empirical formula represent this compound?
A) $\mathrm{C}_{2} \mathrm{HNO}_{2}$ and CHNO
B) $\mathrm{C}_{2} \mathrm{HNO}_{2}$ and $\mathrm{C}_{2} \mathrm{HNO}_{2}$
C) $\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$ and CHNO
D) $\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$ and $\mathrm{C}_{2} \mathrm{HNO}_{2}$
3. An example of an empirical formula is
A) $\mathrm{C}_{4} \mathrm{H}_{10}$
B) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
C) $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
D) $\mathrm{CH}_{2} \mathrm{O}$
4. A compound has a molecular mass of 54 and an empirical formula of $\mathrm{C}_{2} \mathrm{H}_{3}$. What is the molecular formula of the compound?
A) $\mathrm{C}_{2} \mathrm{H}_{3}$
B) $\mathrm{C}_{4} \mathrm{H}_{6}$
C) $\mathrm{C}_{5} \mathrm{H}_{8}$
D) $\mathrm{C}_{6} \mathrm{H}_{10}$
5. What is the mass of 1.5 moles of CO_{2} ?
A) 66 g
B) 44 g
C) 33 g
D) 29 g
6. What is the gram-formula mass of $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$?
A) $146 \mathrm{~g} / \mathrm{mol}$
B) $194 \mathrm{~g} / \mathrm{mol}$
C) $214 \mathrm{~g} / \mathrm{mol}$
D) $242 \mathrm{~g} / \mathrm{mol}$
7. The gram-formula mass of NO_{2} is defined as the mass of
A) one mole of NO_{2}
B) one molecule of NO_{2}
C) two moles of NO
D) two molecules of NO
8. The gram-formula mass of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ is
A) 46.0 g
B) 64.0 g
C) 78.0 g
D) 96.0 g
9. What is the total number of moles of sulfur atoms in 1 mole of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$?
A) 1
B) 15
C) 3
D) 17
10. What is the total mass in grams of 0.75 mole of SO_{2} ?
A) 16 g
B) 24 g
C) 32 g
D) 48 g
11. What is the total mass of iron in 1.0 mole of $\mathrm{Fe}_{2} \mathrm{O}_{3}$?
A) 160 g
B) 112 g
C) 72 g
D) 56 g
12. A compound has an empirical formula of HCO_{2} and a molecular mass of 90 . grams per mole. What is the molecular formula of this compound?
A) HCO
B) $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
C) $\mathrm{H}_{4} \mathrm{C}_{4} \mathrm{O}_{8}$
D) $\mathrm{H}_{6} \mathrm{C}_{6} \mathrm{O}_{12}$
13. What is the molecular formula of a compound that has a molecular mass of 92 and an empirical formula of NO_{2} ?
A) NO_{2}
B) $\mathrm{N}_{2} \mathrm{O}_{4}$
C) $\mathrm{N}_{3} \mathrm{O}_{6}$
D) $\mathrm{N}_{4} \mathrm{O}_{8}$
14. What is the percent composition by mass of hydrogen in $\mathrm{NH}_{4} \mathrm{HCO}_{3}$ (gram-formula mass $=79$ grams/mole)?
A) 5.1%
B) 6.3%
C) $10 . \%$
D) $50 . \%$
15. The percent composition by mass of magnesium in MgBr_{2} (gram-formula mass $=184 \mathrm{grams} / \mathrm{mole}$) is equal to
A) $\frac{24}{184} \times 100$
B) $\frac{160}{184} \times 100$
C) $\frac{184}{24} \times 100$
D) $\frac{184}{160 .} \times 100$
16. Given the balanced equation representing a reaction:
$\mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{BaCl}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{KCl}(\mathrm{aq})+\mathrm{BaCO}_{3}(\mathrm{~s})$
Which type of reaction is represented by this equation?
A) synthesis
B) decomposition
C) single replacement
D) double replacement
17. Given the balanced equation representing a reaction:
$\mathrm{Zn}(\mathrm{s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{ZnSO}_{4}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
Which type of reaction is represented by this equation?
A) decomposition
B) double replacement
C) single replacement
D) synthesis
18. In which type of reaction do two or more substances combine to produce a single substance?
A) synthesis
B) decomposition
C) single replacement
D) double replacement
19. Given the balanced equation:
$2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$
Which type of reaction is represented by this equation?
A) synthesis
B) decomposition
C) single replacement
D) double replacement
21. Which chemical equation is correctly balanced?
A) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
B) $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})$
C) $2 \mathrm{NaCl}(\mathrm{s}) \rightarrow \mathrm{Na}$ (s) $+\mathrm{Cl}_{2}$ (g)
D) $2 \mathrm{KCl}(\mathrm{s}) \rightarrow 2 \mathrm{~K}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g})$
22. Given the unbalanced equation: $\ldots \mathrm{Fe}_{2} \mathrm{O}_{3}+\ldots \mathrm{CO} \rightarrow _$Fe $+\ldots \mathrm{CO}_{2}$

When the equation is correctly balanced using the smallest whole-number coefficients, what is the coefficient of CO ?
A) 1
B) 2
C) 3
D) 4
20. Base your answer to the following question on the information below.

A 1.0-gram strip of zinc is reacted with hydrochloric acid in a test tube. The unbalanced equation below represents the reaction.

$$
\ldots \quad \mathrm{Zn}(\mathrm{~s})+\ldots \ldots \mathrm{HCl}(\mathrm{aq}) \rightarrow \ldots \mathrm{H}_{2}(\mathrm{~g})+\ldots \mathrm{ZnCl}_{2}(\mathrm{aq})
$$

Balance the equation for the reaction of zinc and hydrochloric acid, using the smallest whole-number coefficients.
23. Given the unbalanced equation:
$\ldots \mathrm{Mg}\left(\mathrm{ClO}_{3}\right)_{2}(\mathrm{~s}) \rightarrow _\mathrm{MgCl}_{2}(\mathrm{~s})+\ldots \mathrm{O}_{2}(\mathrm{~g})$
What is the coefficient of O_{2} when the equation is balanced correctly using the smallest whole number coefficients?
A) 1
B) 2
C) 3
D) 4
24. Given the unbalanced equation:
$__\mathrm{Al}(\mathrm{s})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow _\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$

When this equation is correctly balanced using smallest whole numbers, what is the coefficient of O $2(\mathrm{~g})$?
A) 6
B) 2
C) 3
D) 4
25. Given the balanced equation representing the reaction between methane and oxygen:
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
According to this equation, what is the mole ratio of oxygen to methane?
A) $\frac{1 \mathrm{gram} \mathrm{O}_{2}}{2 \text { grams } \mathrm{CH}_{4}}$
B) $\frac{1 \text { mole } \mathrm{O}_{2}}{2 \text { moles } \mathrm{CH}_{4}}$
C) $\frac{2 \text { grams } \mathrm{O}_{2}}{1 \text { gram CH}} 4$
D) $\frac{2 \text { moles } \mathrm{O}_{2}}{1 \text { mole } \mathrm{CH}_{4}}$
26. Given the balanced equation representing a reaction:
$\mathrm{F}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HF}(\mathrm{g})$
What is the mole ratio of $\mathrm{H}_{2}(\mathrm{~g})$ to $\mathrm{HF}(\mathrm{g})$ in this reaction?
A) $1: 1$
B) $1: 2$
C) $2: 1$
D) $2: 3$
27. Given the balanced equation:
$2 \mathrm{C}+3 \mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}$
What is the total number of moles of C that must completely react to produce 2.0 moles of $\mathrm{C}_{2} \mathrm{H}_{6}$?
A) 1.0 mol
B) 2.0 mol
C) 3.0 mol
D) 4.0 mol
28. Given the balanced equation:
$2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
What is the total number of moles of $\mathrm{O}_{2}(\mathrm{~g})$ that must react completely with 5.00 moles of $\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})$?
A) 10.0
B) 20.0
C) 26.5
D) 32.5
29. Given the reaction:

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

What is the total number of moles of CO_{2} produced by the complete combustion of 5.0 moles of $\mathrm{C}_{2} \mathrm{H}_{6}$?
A) 1.0 mole
B) 2.0 moles
C) 5.0 moles
D) 10 . moles
30. Given the equation:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{~g})
$$

What is the total number of moles of $\mathrm{HCl}(\mathrm{g})$ produced when 3 moles of $\mathrm{H}_{2}(\mathrm{~g})$ is completely consumed?
A) 5 moles
B) 2 moles
C) 3 moles
D) 6 moles
31. What is the chemical formula for lead(IV) oxide?
A) PbO_{2}
B) PbO_{4}
C) $\mathrm{Pb}_{2} \mathrm{O}$
D) $\mathrm{Pb}_{4} \mathrm{O}$
32. What is the chemical formula for sodium sulfate?
A) $\mathrm{Na}_{2} \mathrm{SO}_{3}$
B) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
C) NaSO_{3}
D) NaSO_{4}
33. The chemical formula for nickel (II) bromide is
A) $\mathrm{Ni}_{2} \mathrm{Br}$
B) NiBr_{2}
C) $\mathrm{N}_{2} \mathrm{Br}$
D) NBr_{2}
34. Which is the formula for the compound that forms when magnesium bonds with phosphorus?
A) $\mathrm{Mg}_{2} \mathrm{P}$
B) MgP_{2}
C) $\mathrm{Mg}_{2} \mathrm{P}_{3}$
D) $\mathrm{Mg}_{3} \mathrm{P}_{2}$
35. Which formula represents copper(I) oxide?
A) CuO
B) CuO_{2}
C) $\mathrm{Cu}_{2} \mathrm{O}$
D) $\mathrm{Cu}_{2} \mathrm{O}_{2}$
36. Which formula represents lead(II) chromate?
A) PbCrO_{4}
B) $\mathrm{Pb}\left(\mathrm{CrO}_{4}\right)_{2}$
C) $\mathrm{Pb}_{2} \mathrm{CrO}_{4}$
D) $\mathrm{Pb}_{2}\left(\mathrm{CrO}_{4}\right)_{3}$
37. The correct chemical formula for iron(II) sulfide is
A) FeS
B) $\mathrm{Fe}_{2} \mathrm{~S}_{3}$
C) FeSO_{4}
D) $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
38. Which is a binary compound?
A) CaCl_{2}
B) KOH
C) NaNO_{3}
D) MgSO_{4}
39. What is the correct formula for ammonium carbonate?
A) $\mathrm{NH}_{4}\left(\mathrm{CO}_{3}\right)_{2}$
B) $\mathrm{NH}_{4} \mathrm{CO}_{3}$
C) $\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{CO}_{3}\right)_{2}$
D) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$

