Regents Chemistry:

Unit 6: Supplemental

Naming

LESSON A: Writing Chemical Formulas for Ionic Compounds

Objective:

\checkmark Construct chemical formulas for ionic compounds
\checkmark Construct chemical formulas for binary compounds containing multiple charges
\checkmark Construct chemical formulas for tertiary compounds containing polyatomic ions

Sub-Lesson A-1: Simple Binary ionic compounds (one metal and one non-metal atom)
lonic Compounds require two types of ions: cations which are positive and anions which are negative. All metals (on the left side of the periodic table) form cations and nonmetals (on the right side of the periodic table) form anions primarily. In order to determine the formula of the compound they create you must make sure their ions sum to zero. For example, table salt is sodium chloride. Using the periodic table's first set of ions, sodium forms ${ }^{+1}$ ions and chlorine forms ${ }^{-1}$ ions. Therefore their ions cancel out and the formula is NaCl . It is not always that easy. Calcium chloride is the salt we put on roads to melt ice. Calcium forms ${ }^{+2}$ ions and Chloride forms ${ }^{-1}$ ions. We need two chloride ions to balance the charges. The formula is CaCl_{2}. Notice the metal, or positive cation is always written first! Try the following examples:

1. Cesium fluoride:
2. Potassium oxide:
3. Magnesium iodide: \qquad
4. Barium sulfide:
5. Aluminum chloride:
6. Calcium phosphide:
\qquad
\qquad

There is a short cut called the criss cross and reduce rule. Simply "drop" the sign of the charges then criss cross down to form subscripts (if you can reduce by a common factor you must do so). In example 6, calcium phosphide had charges ${ }^{+2}$ and ${ }^{-3}$ respectively. Drop the charges to form uncharged subscripts ${ }_{2}$ and ${ }_{3}$ and criss cross down to form $\mathrm{Ca}_{3} \mathrm{P}_{2}$. Try the criss cross and reduce rule to find the formula:

	Chloride	Sulfide	Fluoride	Phosphide
Lithium				
Aluminum	$\mathrm{Al}_{4}^{+3} \mathbf{C l}_{\mathbf{- 1}} \quad \mathrm{AlCl}_{3}$			
Magnesium				
Zinc				

Sub Lesson A-2: Formula Writing with Multiple Oxidation States

If the metal in an ionic compound has more than 1 oxidation state you must write the charge used (roman numerals in parenthesis).

Transition metals refer to the metals in groups 3-11 of the period table (elements Sc through Cu and down). These metals form various positive ions and therefore have more than one oxidation state (charge). Other metals, such as Lead (Pb) also have more than one oxidation state. It is important to identify which ion is used. When given the name, use that numeral as the CHARGE of that ion. Then apply the same rules as we did in lesson 4A to determine the formula.

| One I | Five V |
| :--- | :--- | :--- |
| Two II | Six VI |
| Three III | Seven VII |
| Four IV | |

IF YOU ARE NOT FAMILIAR WITH ROMAN NUMERALS YOU NEED TO MEMORIZE THE LIST ABOVE.
You can still use the drop and swap (criss cross) rule, but recall that the final ratio must be the lowest common multiple (+2/-2 becomes 1:1). Remember the number in roman numerals refers to the charge of the metal ion (cation). Try to give the formula of the following compounds:

1. Chromium (VI) oxide \qquad
2. Manganese (VII) chloride \qquad
3. Lead (IV) iodide \qquad
4. Silver (I) sulfide
5. Nickel (II) fluoride \qquad
6. Zinc (II) oxide
7. Iron (II) oxide
8. Iron (III) oxide
9. Gold (III) phosphide
10. Titanium (IV) sulfide

Sub Lesson A-3: Polyatomic Ions

Binary compounds have only two elements in their formula, as we saw in exercises above. Tertiary compounds have three or more elements in their formula and have a new system of naming. These compounds have a polyatomic ion, which is an ion that has a few elements grouped together with only one charge between them. A common example is OH^{-}which shows two elements with an overall charge of -1 . To find the formula and charge, look up the information on the polyatomic ion on Table E. Some notes:

- Names are similar - be sure you have the right one!
- Non-metal ions always end in "ide" however three polyatomic ions also end in ide - know them!
- Most polyatomic ions are anions, but ammonium $\left(\mathrm{NH}_{4}{ }^{+}\right)$is a cation and gets listed first in a formula
- Be sure to put parenthesis around a polyatomic ion BEFORE adding a subscript - they come as a unit!

To write the formula of a tertiary compound you can still use the drop and swap rule, however, you must be sure to only drop the superscripts and leave the subscripts alone. For example, aluminum carbonate:

$$
\mathrm{Al}^{+3} \text { and } \mathrm{CO}_{3}^{-2} \quad \text { Leave the } 3_{3} \text { alone! Swap the }{ }^{3} \text { and }{ }^{2} \quad \mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}
$$

Remember, formulas don't show any charges. You can see that we use parenthesis around the polyatomic ion because the entire ion charge was -2 and must swap with aluminum so the entire ion gets aluminum's 3 . Try to write the formula for the following compounds (write the formulas of the ions next to the name first):

	Hydroxide	Nitrate	Carbonate	Phosphate	Acetate
Sodium					
Calcium					
Ammonium					
Iron (II)					
Aluminum					

1. Zinc Hydroxide: \qquad
2. Calcium chlorate: \qquad
3. Hydrogen acetate: \qquad 6. Strontium cyanide: \qquad
4. Magnesium oxalate: \qquad
5. Lead (IV) chromate: \qquad

ADDITIONAL PRACTICE : LESSON A

Write the chemical formula for the following:

1. zinc oxide
2. potassium bromide
3. Aluminum nitride
4. copper (I) bromide
5. copper (II) bromide
6. Aluminum bromide
7. aluminum phosphate
8. strontium acetate
9. Aluminum sulfate

LESSON B: Naming Ionic Compounds

Objective:

\checkmark Name simple binary ionic compounds
\checkmark Identify binary compounds containing multiple charges by name using roman numerals
\checkmark Identify tertiary compounds containing polyatomic ions by name

Sub Lesson B-1: Naming Simply Binary Ionic Compounds

Now we know how to write formulas from their names but we also need to know how to write names from formulas. The rule is: write the whole name of the first element and the second element drop the ending and replace with "ide." For example: $\mathrm{Na}_{2} \mathrm{~S}$ is sodium sulfide. In this case, the amount of each element doesn't affect the name of the compound. Use table \boldsymbol{S} to help you find names. Try to name the following examples:
\qquad
2. MgCl_{2} \qquad
3. $\mathrm{Al}_{2} \mathrm{O}_{3}$ \qquad
4. Mgl_{2} \qquad
5. CaH_{2} \qquad 10. AlCl_{3} \qquad

Sub Lesson B-2. Metals with Multiple Oxidation States

When a metal can have multiple oxidation states, we must indicate the appropriate charge with a roman numeral. To do this, we must work backwards to identify the charge of the metal, meaning, we will look at the charge for the negative (non-metal) ion in the formula to find that charge of the first. We will report the charge of the positive ion in roman numerals (the numerals you memorized in lesson 4, page 8) in parenthesis after that ion. For example:

CuO	O is -2 so Cu needs to be +2	Copper (II) oxide
$\mathrm{Cu}_{2} \mathrm{O}$	O is -2 so each Cu must be +1	Copper (I) oxide

These two compounds have different structures and properties and must have different names. Try to name the following compounds with metals with multiple oxidation states:

1. FeBr_{2} \qquad 6. NiF_{3}
2. FeBr_{3} \qquad 7. CuCl
3. CuCl_{2}
4. CuS
5. $\mathrm{Cu}_{2} \mathrm{~S}$

SubLesson B-3

As before, name the first element (cation) completely and then look up the rest of the compound on table E of the reference tables. Make sure you copy the right one, some are very similar! Also, beware of $\mathrm{NH}_{4}{ }^{+}$which is the only polyatomic cation (that comes in front). Try naming the following examples:

1. KHCO_{3} \qquad 4. LiNO_{2}
2. CaSO_{4} \qquad 5. $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}$ \qquad
3. NaNO_{3} \qquad 6. $\mathrm{Al}_{2}\left(\mathrm{SO}_{3}\right)_{3}$ \qquad

Additional Naming Practice: Write the name of each of the following:

1. CaCl_{2}
2. NaBr
3. $\mathrm{Na}_{2} \mathrm{~S}$
4. FeCl_{2} \qquad
5. FeCl_{3} \qquad
6. $\mathrm{Ag}_{3} \mathrm{~N}$ \qquad
7. KNO_{3} \qquad
8. LiOH \qquad
9. $\mathrm{Ni}(\mathrm{OH})_{2}$ \qquad

LESSON C: NAMING AND FORMULA WRITING: COVALENT (MOLECULAR) COMPOUNDS

Objective:

\checkmark Name simple binary covalent compounds
\checkmark Given the name, write the formula for a simple binary covalent compound

Sub-Lesson C-1: Simple Binary covalent compounds are composed of some ratio of two different non-metal atoms. Because elements can share electrons in varying structures, there are multiple possible combinations for any given pair of non-metals (for example CO and CO_{2}).

To name a binary covalent compound, we use a prefix (see below) to indicate the number of atoms, followed by the element name for the first element (exception, if only one, as in CO2, we don't say "monocarbon" we just say "carbon" and the one is assumed) The second element is named in the same way, but with the "ide" ending, just as in ionic naming.

So, going back to CO and CO_{2}, the first is carbon monoxide while the latter is carbon dioxide

Number of Atoms	Prefix
One	Mono
Two	Di
Three	Tri
Four	Tetra
Five	Penta
Six	Hexa
Seven	Hepta
Eight	Octa

REMEMBER IF IT IS AN ELEMENT, IT DOESN’T FOLLOW THESE RULES - IT IS SIMPLY THE ELEMENT, e.g., $\mathrm{O}_{2}=$ oxygen

Try these:

XeF_{6}	CCl_{4}
SO_{2}	$\mathrm{~S}_{2} \mathrm{O}_{3}$
PCl_{5}	NO
$\mathrm{N}_{2} \mathrm{O}_{4}$	CS_{2}
OF_{2}	$\mathrm{H}_{2} \mathrm{~S}$

Some notes...

In the name and in the formula, the less electronegative (partial positive) is listed first, much like the cation in an ionic compound.

When combining prefixes and elements, reduce a double vowel to make it sound better, e.g., "pentoxide" for ... O_{5} sounds better then "pentaoxide."
$\mathrm{HCl}, \mathrm{HF}, \mathrm{HBr}$, and HI are named as if ionic (hydrogen chloride, etc) without the prefices (Hydrogen can only bond in one way so no ambiguity)

Organic compounds (Carbon compounds, usually with hydrogen) have a different set of rules we will cover in Unit 14.

Ammonia (TriHydrogen Nitride) has a historic name - ammonia and formula (NH_{3})

Sublesson C-2. Writing formulas given the name.

Going in reverse to get the formula from the name simply requires "unpacking" the prefixes. So in the first example, dinitrogen $=\mathrm{N}_{2}$ and trioxide $=\mathrm{O}_{3}$, for a formula of $\mathrm{N}_{2} \mathrm{O}_{3}$.

1. Write formulas for the following molecular substances.

Name	Formula		Name	Formula
dinitrogen trioxide			silicon tetrafluoride	
diphosphorus pentoxide		carbon tetrachloride		
sulfur dioxide			boron triiodide	
silicon dioxide			carbon disulfide	
xenon pentafluoride			phosphorus pentabromide	
dihydrogen monoxide			boron trihydride	

2. Write IUPAC Names for the following molecular (covalent) substances:

Name	Formula	Name	Formula
	$\mathrm{N}_{2} \mathrm{O}_{5}$		$\mathrm{H}_{2} \mathrm{~S}$
	SF_{5}		BF_{3}
	PBr_{3}		PH_{3}
	SO_{3}		$\mathrm{H}_{2} \mathrm{O}$
	$\mathrm{B}_{2} \mathrm{H}_{4}$		Cl_{2}
	PCl_{5}		PCl_{3}
	$\mathrm{P}_{2} \mathrm{O}_{5}$		SCl_{6}
	CS_{2}		CO_{2}
	CO		NO
	BCl_{3}		NO_{2}

