\qquad
\qquad

Lab \#
 \qquad
 Understanding Half Life

Aim (3 points):

Materials (3 points):

Vocabulary (8 points):

Half life

Decay mode

Radioisotope

Nuclear Charge

Method:

1. Count the $m \& m$ ' ${ }^{\circledR}$ ® in your cup. Write the number below..
2. Write down your starting time.
3. Place the $m \& m$'s ${ }^{\circledR}$ in the cup. Shake the cup and dump the $m \& m$ ' s ® onto a paper towel.
4. Remove all $m \& m$ ' s ® which have the " m " facing up. Record this number on the data table. These $m \& m$ ' ${ }^{\circledR}$ represent decayed $m \& m$ ' ${ }^{\circledR}$; set these aside on the towel for later consumption.
5. Repeat step 3 until either 1 or $0 m \& m$ ' ${ }^{\circledR}$ remain.
6. Write down your ending time.
7. Determine the number of seconds it took to complete the experiment.
8. Divide the time by the number of trials to determine the half-life of your $m \& m$ ' ${ }^{\circledR}$.
9. Record the total elapsed time and the number of $m \& m$ ' ${ }^{\circledR}$ remaining after each half-life in Table 2.
10. When your data Tables have been verified by the teacher, you may eat the $m \& m$ ' s ®

Data (10 points):

 starting time \qquad ending time \qquad \# seconds elapsed \qquadHalf life $=\frac{\text { total \# seconds }}{\# \text { of trials }}=\underset{\text { trials }}{\text { seconds }}=\square$ seconds

Table 1 (data): (10 points)
Number of $m \& m$'s you started with
Table 2 (analysis): (10 points)
Half life of $\boldsymbol{m} \boldsymbol{*} \boldsymbol{m}$'s

Trial \#	$\begin{aligned} & \text { \# of decayed } \\ & m \& m ; s \end{aligned}$	Half Life	Time (seconds)	Remaining $m \& m$'s
0	0	0	0	
		1		
		2		
		3		
		4		
		5		
		6		
		7		
		8		
		9		
		10		

Using Table 2 make a graph with a best fit curve. Put time in seconds on the X axis and number of $m \& m$'s ${ }^{\circledR}$ remaining on the Y axis. Be sure to put a title on your graph. (15 points)

Questions (3 points each):

1. What did you determine the half-life of your m\&m's® was? \qquad
2. Approximately what percent of $m \& m$ ' ${ }^{\circledR}$ was removed at each trial? \qquad
3. Is it possible to predict which of the $m \& m$ ' s ® will be " m " side up? \qquad
Explain \qquad
4. Is it possible to predict approximately how many $m \& m$'s® will be " m " side up for each shake? \qquad Explain.
5. How would you describe the shape of your graph? \qquad
6. Suppose you started with $1000 \mathrm{~m} \& \mathrm{~m}$'s®, about how many $\mathrm{m} \& \mathrm{~m}$'s ${ }^{\circledR}$, would be removed in the first shake? \qquad
7. How would the shape of the graph from question \#6 compare to the one above?
8. Explain why the graph of the $1000 \mathrm{~m} \& \mathrm{~m}$'s is similar or different.
9. Describe how this lab simulates the half life of an element.

Regents Questions (next page) (14 points).

