Name: Pd:	Date:
Lab # Constructing Pote	ential Energy Curves
Aim: To construct a potential energy curve for an endothermic exothermic reaction.	reaction and a potential energy curve for an
Define (cite source): (12 points)	
Potential Energy:	
Heat of Reaction:	
Activation Energy:	
Activated Complex:	
Forward Reaction:	
Reverse Reaction:	
Materials:	
Graph paper Pencil Ruler Data from lab worksheet	

Method:

Use the following data to create two Potential energy curves. Once constructed, label each curve as instructed following the data tables. (Each graph is worth 24 points – 5 points for proper set up (title, axis properly labeled); 5 points for neatness; 14 points for labeled elements)

GRAPH A:

Reaction: $A + B \leftarrow \rightarrow C + D + heat$

Potential Energy of the Reactants	Potential Energy of the Products	Activation Energy
45kJ	25kJ	10kJ

GRAPH B:

Reaction: $A + B + heat \leftarrow \rightarrow C + D$

Potential Energy of the Reactants	Potential Energy of the Products	Activation Energy
35kJ	50kJ	35kJ

On your graphs, label the following:

- 1. Potential Energy of the Reactants for the *forward* reaction.
- 2. Potential Energy of the Products of the forward reaction.
- 3. Activation Energy of the *forward* reaction.
- 4. Potential Energy of the Activated Complex
- 5. Heat of reaction
- 6. Identify/label the forward reaction as endothermic or exothermic.
- 7. On Graph A, show the effect of a catalyst on the reaction coordinates.
- 8. On Graph B, label the Potential Energy of the Reactants for the *reverse* reaction.

Answer the following questions based on the chemical reactions given for Graph A and Graph B (5 points each):

- 1. What are the two requirements of an effective collision?
 - 2. List 5 factors that affect reaction rate.
 - 3. What in the reaction equation tells you these reactions can be reversed?
 - 4. What in the reaction equation tells you whether the reaction is endothermic or exothermic?

Answer the following from your graph: (5 points each)

- 1. What on the PE diagram indicates whether the reaction is endothermic or exothermic?
- 2. a. How does the addition of a catalyst to the reaction change the PE diagram?
 - b. What is the effect of a catalyst on the Activation Energy of both the forward and reverse reactions?
 - c. What is the effect of a catalyst on the Heat of Reaction?

Regents Questions (2 points each)