Regents Chemistry:

Practice Packet Unit 10: Acids and Bases

Vocabulary:

Vocabullary

For each word, provide a short but specific definition from YOUR OWN BRAIN! No boring textbook definitions. Write something to help you remember the word. Explain the word as if you were explaining it to an elementary school student. Give an example if you can. Don't use the words given in your definition!

Acid: \qquad

Base: \qquad
Salt: \qquad

Electrolyte: \qquad
Molarity: \qquad

Neutralization: \qquad
Titration: \qquad

End Point: \qquad

Objective:

- Differentiate between an a Arrhenius Acid \& Base
- Identify properties of acids and bases
- Behavior of many acids and bases can be explained by the Arrhenius theory. Arrhenius acid and bases are electrolytes.
- An \qquad is a substance which, when dissolved in water, forms a solution capable of conducting an electric current. The ability of a solution to conduct an electric current depends on the concentration of ions.
- Arrhenius acids yield \qquad as the only positive ion in an aqueous solution. The hydrogen ion may also be written as $\mathrm{H}_{3} \mathrm{O}^{+}$(aq), hydronium ion.
- Arrhenius bases yield \qquad as the only negative ion in an aqueous solution.

1. Properties of acids: 1 . Contain the \qquad ion

Bases: 1. Contain the \qquad ion
2. Tastes \qquad 2. Tastes \qquad
3. pH \qquad 3. pH \qquad
4. Found on Table \qquad 4. Found on table \qquad
2. Acids and Bases are known as \qquad because when dissolved they conducted electricity.

PRACTICE PROBLEMS

1. Use Table K and Table L to help you identify the rules for determining whether a substance is an acid, a base, or a salt based on the formula. Label each as an acid, base, or salt. Leave the covalent substances alone.

NaCl
$\mathrm{CH}_{3} \mathrm{OH}$
$\mathrm{H}_{2} \mathrm{SO}_{4}$
$\mathrm{Ca}(\mathrm{OH})_{2}$
CH_{4}
$\mathrm{NH}_{4} \mathrm{Br}$
HCl
$\mathrm{Na}_{2} \mathrm{SO}_{4}$
HNO_{3}
$\mathrm{CH}_{3} \mathrm{COOH}$
NaOH
$\begin{array}{llllll}\mathrm{H}_{3} \mathrm{PO}_{4} & \mathrm{LiOH} & \mathrm{CH}_{2}(\mathrm{OH})_{2} & \mathrm{NH}_{4} \mathrm{OH} & \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} & \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\end{array}$

- All acids have the \qquad ion in common.
- All bases have the \qquad ion in common.
- All salts have formulas that contain: \qquad
- Organic acids have the general formula: \qquad
- Draw ethanoic acid and show which H^{+}ion is lost:

Fill in the table indicating if the property is characteristic of an acid or base

Property	Acid or Base	Property	Acid or Base
Tastes sour		Tastes Bitter	
Hydrolyzes Fats into soap		Reacts with active metals to for H_{2}	
$\mathrm{HCl}(\mathrm{aq})$		KOH(aq)	
pH of 12		Forms $\mathrm{H}_{3} \mathrm{O}^{+}$	

2. Which formula represents a hydronium ion?
(1) $\mathrm{H}_{3} \mathrm{O}^{+}$
(2) OH^{-}
(3) $\mathrm{NH}_{4}{ }^{+}$
(4) $\mathrm{HCO}_{3}{ }^{-}$
3. Which compound is an Arrhenius acid?
(1) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(2) NaOH
(3) KCl
(4) NH_{3}
4. Which substance is an Arrhenius acid?
(1) $\mathrm{Ba}(\mathrm{OH})_{2}$
(2) $\mathrm{H}_{3} \mathrm{PO}_{4}$
(3) $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$
(4) NaCl
5. Which compound releases hydroxide ions in an aqueous solution?
(1) $\mathrm{CH}_{3} \mathrm{COOH}$
(2) HCl
(3) $\mathrm{CH}_{3} \mathrm{OH}$
(4) KOH
6. The Arrhenius theory explains the behavior of
(1) acids and bases
(2) alcohols and amines
(3) isomers and isotopes
(4) metals and nonmetals
7. Which two compounds are electrolytes?
(1) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
(2) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ and HCl
(3) NaOH and HCl
(4) NaOH and $\mathrm{CH}_{3} \mathrm{CHOH}$
8. An aqueous solution of lithium hydroxide contains hydroxide ions as the only negative ion in solution. Lithium hydroxide is classified as an
(1) aldehyde
(3) Arrhenius acid
(2) alcohol
(4) Arrhenius base
9. Which compound is an Arrhenius acid?
(1) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(3) NaOH
(2) KCl
(4) NH_{3}
10. Which two formulas represent Arrhenius acids?
(1) $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
(2) $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$
(3) KHCO_{3} and KHSO_{4}
(4) NaSCN and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
11. According to the Arrhenius theory, an acid is a substance that
(1) changes litmus from red to blue
(2) changes phenolphthalein to pink
(3) produces hydronium ions as the only positive ions in an aqueous solution
(4) produces hydroxide ions as the only negative ions in an aqueous solution
12. Which formula represents a hydronium ion?
(1) $\mathrm{H}_{3} \mathrm{O}^{+}$
(2) OH^{-}
(3) $\mathrm{NH}_{4}{ }^{+}$
(4) HCO_{3}^{-}
13. Which substance is an Arrhenius acid?
(1) $\mathrm{Ba}(\mathrm{OH})_{2}$
(2) $\mathrm{H}_{3} \mathrm{PO}_{4}$
(3) $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$
(4) NaCl
14. Which compound releases hydroxide ions in an aqueous solution?
(1) $\mathrm{CH}_{3} \mathrm{COOH}$
(2) HCl
(3) $\mathrm{CH}_{3} \mathrm{OH}$
(4) KOH
15. Which substance is an Arrhenius base?
(1) $\mathrm{CH}_{3} \mathrm{OH}$
(2) LiOH
(3) $\mathrm{CH}_{3} \mathrm{Cl}$
(4) LiCl
16. The only positive ion found in $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ is the
(1) ammonium ion
(3) hydronium ion
(2) hydroxide ion
(4) sulfate ion
17. Which substance, when dissolved in water, forms a solution that conducts an electric current?
(1) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(3) $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
(2) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
(4) $\mathrm{CH}_{3} \mathrm{COOH}$

Acids and Table J

$$
\text { acid + more active metal } \rightarrow \mathrm{H}_{2}(g)+a \text { salt }
$$

Any metal ABOVE H_{2} in the table will react with acids to produce $\mathrm{H}_{2}(\mathrm{~g})$ and a salt.
Any metal below H_{2} in the table will NOT react with an acid (only 3 metals do NOT react with acids: $\mathrm{Cu}, \mathrm{Au}, \mathrm{Ag}$) When metals react with acids, this is an example of a SINGLE REPLACEMENT reaction.

Predict the products of the following reactions:

$$
\begin{array}{ll}
\mathrm{Zn}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow+ \\
\mathrm{Ag}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) & \rightarrow+ \\
\mathrm{Ca}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow+
\end{array}+
$$

1. According to Reference Table J, which of these metals will react most readily with 1.0 M HCl to produce $\mathrm{H}_{2}(\mathrm{~g})$?
(1) Ca
(2) K
(3) Mg
(4) Zn
2. Under standard conditions, which metal will react with 0.1 M HCl to liberate hydrogen gas?
(1) Ag
(2) Au
(3) Cu
(4) Mg
3. Because tap water is slightly acidic, water pipes made of iron corrode over time, as shown by the balanced ionic equation below. Explain, in terms of chemical reactivity, why copper pipes are less likely to corrode than iron pipes.

$$
2 \mathrm{Fe}(\mathrm{~s})+6 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 2 \mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

4. Many ancient cultural statues and buildings were made out of marble. Marble is a type of rock which contains the metal calcium in it. Explain, using Table J, why marble statues are damaged by acid rain.
5. During a laboratory activity, a student reacted a piece of zinc with $0.1 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$.
(a) Complete the equation below by writing the formula of the missing products.

$$
\mathrm{Zn}+\mathrm{HCl} \rightarrow \ldots+
$$

(b) Identify one metal that does not react spontaneously with $\mathrm{HCl}(\mathrm{aq})$.

Practice Packet Unit 10: Acids and Bases

When an acid dissolved it dissociates or ionizes (breaking up into two ions). The ions are separated due to the polarity of water, as shown below in the $1^{\text {st }}$ box. Draw what happens to the acid, base, and salt in water in the other boxes.

$\mathrm{NaCl}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{NaCl}(\mathrm{aq})$

Explain why they are known as electrolytes when in solution but not when they are in solid or gas phases.

Lesson 2: Alternate Theory of Acids and Bases (Bronsted Lowry)

Objective:

- Differentiate between a Brønsted Lowry Acid and Base

Acids are defined as proton $\left(\mathrm{H}^{+}\right)$donators. They donate protons to the base. Bases are defined as proton acceptors. They accept protons from the acid.

$$
\mathrm{HCl}+\mathrm{NH}_{3} \longleftrightarrow \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}
$$

According to Bronsted-Lowry theory, acid-base reactions involve a transfer of a proton. Above, the acid on the left, \qquad transfers (donates) a proton $\left(\mathrm{H}^{+}\right)$and becomes a base (for the reverse reaction) on the right, \qquad . The donating acid and the base it becomes are called conjugate acid - base pairs. The base on the left, \qquad , accepts a proton $\left(\mathrm{H}^{+}\right)$and becomes an acid (for the reverse reaction) on the right,
\qquad . This is also a conjugate pair.

$$
\begin{align*}
& \mathrm{HCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \longleftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\text {aq })}+\mathrm{Cl}_{(\mathrm{aq})} \tag{1}\\
& \mathrm{HCl}_{(\mathrm{aq})}+\mathrm{NH}_{3(\mathrm{aq})} \longleftrightarrow \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{Cl}^{-}{ }_{(\mathrm{aq})} \tag{2}\\
& \mathrm{NH}_{4}{ }^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})} \longleftrightarrow \mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})} \tag{3}\\
& \mathrm{H}_{2} \mathrm{PO}_{4(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \longleftrightarrow \mathrm{HPO}_{4}{ }^{2-}{ }_{(\mathrm{aq})}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})} \tag{4}
\end{align*}
$$

1. In the reactions above, list the acids in the reactants and explain what they all have in common.
2. In the reactions, list the bases in the first half of the equation and explain what they all have in common.
3. If you reverse the equations, list the new acids and bases. Acids:

Bases:
4. Now you can see, that each acid on the left hand side produces a corresponding base on the right hand side. The base is called the conjugate base. Similarly, a base on the right hand side will produce a conjugate acid. These pairs are known as conjugate acid-base pairs. List the conjugate acid-base pairs for equations (1) and (2).
5. Write the acid-base reaction for NH_{3} reacting with HNO_{2} and identify the acid, the base, the conjugate acid and the conjugate base.
\qquad 6. One acid-base theory defines a base as an
(1) H^{+}donor
(2) H donor
(3) H^{+}acceptor
(4) H acceptor
\qquad 7. One alternate acid-base theory states that an acid is a(n)
(1) H^{+}donor
(2) OH^{-}donor
(3) H^{+}acceptor
(4) OH^{-}acceptor
_8. According to one acid-base theory, a water molecule acts as an acid when the water molecule
(1) accepts an $\mathrm{H}+$
(2) accepts an $\mathrm{OH}-$
(3) donates an $\mathrm{H}+$
(4) donates an $\mathrm{OH}-$
_ 9. Given the equation representing a reaction at equilibrium:

$$
\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longleftrightarrow \mathrm{NH}_{4}+(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

The H^{+}acceptor for the forward reaction is
(1) $\mathrm{H}_{2} \mathrm{O}$ (l)
(2) $\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})$
(3) $\mathrm{NH}_{3}(\mathrm{~g})$
(4) $\mathrm{OH}^{-}(\mathrm{aq})$
_10. Which formula represents a hydronium ion?
(1) $\mathrm{H}_{3} \mathrm{O}^{+}$
(2) OH^{-}
(3) $\mathrm{NH}_{4}{ }^{+}$
(4) $\mathrm{HCO}_{3}{ }^{-}$
_11. Given the balanced equation representing a reaction:

$\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longleftrightarrow \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathbf{O H}^{-}(\mathrm{aq})$

According to one acid-base theory, the $\mathrm{NH}_{3}(\mathrm{~g})$ molecules act as
(1) an acid because they accept H^{+}ions
(2) an acid because they donate H^{+}ions
(3) a base because they accept H^{+}ions
(4) a base because they donate H^{+}ions
__12. Which statement describes an alternate theory of acids and bases?
(1) Acids and bases are both H^{+}acceptors.
(2) Acids and bases are both H^{+}donors.
(3) Acids are H^{+}acceptors, and bases are H^{+}donors.
(4) Acids are H^{+}donors, and bases are H^{+}acceptors.
_13 Which substance, when dissolved in water, forms a solution that conducts an electric current?
(1) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(2) $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
(3) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
(4) $\mathrm{CH}_{3} \mathrm{COOH}$

Lesson 3: pH Scale and Indicators

Objective:

- Differentiate between an Acid and Base on the pH scale
- Determine the change in $\mathrm{H}+$ or OH - concentration during a change in pH

The pH scale is a measure of the H^{+}or $\mathrm{H}_{3} \mathrm{O}^{+}$concentration in a solution. " pH " stands for "potential to ATTRACT Hydrogen ions"
> Acids have a LOW pH (a LOW potential to attract H^{+}ions (release/DONATE H^{+})
> Bases have a HIGH pH (a HIGH potential to attract H^{+}ions (bases are H^{+}acceptors)
The pH scale is logarithmic, which means that a change of one pH unit will change the concentration of \mathbf{H}^{+}by a factor of $\mathbf{1 0}$.

1. Label the pH scale below in terms of acid, base and neutral.

1	2	3	4	5	6	7	8	9	10	11	12	13	14

2. Complete the table using the grid below:

	Hydronium Ion Concentration (M)	$\mathbf{p H}$	Acid or Base?
Stomach fluids			
Lemon Juice			
Blood			
Seawater			
Bleach			

3. Circle one to complete the table

	If an ACID is added...	If a BASE is added...
$\mathbf{p H}$	Increases or Decreases	Increases or Decreases
$\left[\mathbf{H}^{+}\right]$or $\left[\mathrm{H}_{3} \mathbf{O}^{+}\right]$	Increases or Decreases	Increases or Decreases
$\left[\mathbf{O H}^{-}\right]$	Increases or Decreases	Increases or Decreases
Solution becomes more	Acidic or Basic	Acidic or Basic

Recall the following:

- increasing or decreasing the $\mathbf{p H}$ by 1 changes the $\left[\mathrm{H}^{+}\right]$by a factor of 10^{1} (10 times, "tenfold")
- increasing or decreasing the $\mathbf{p H}$ by 2 changes the $\left[\mathrm{H}^{+}\right]$by a factor of $\mathbf{1 0}^{\mathbf{2}}$ (100 times, hundred-fold)
- increasing or decreasing the $\mathbf{p H}$ by $\mathbf{3}$ changes the $\left[\mathrm{H}^{+}\right]$by a factor of 1000 (thousandfold)

4. Describe what happens to the concentration of hydrogen ions in a solution if the pH is changed from 7 to 5 .
5. Describe what is happening to the concentration of hydrogen ions in a solution if the pH is changed from 5 to 8.
6. Complete the table below:

pH Change	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$increase or decrease?	$\left[\mathrm{OH}^{-}\right]$ increase or decrease?	Does the solution become more acidic or basic?	By a factor of...
6 to 8				
8 to 5				
3 to 7				
11 to 9				
14 to 13				
4 to 8				

Practice Packet Unit 10: Acids and Bases

7. Which of these pH numbers indicates the highest level of acidity?
(1) 5
(2) 10
(3) 8
(4) 12
8. Which change in pH represents a hundredfold increase in the concentration of hydronium ions in a solution?
(1) pH 1 to pH 2
(3) pH 2 to pH 1
(2) pH 1 to pH 3
(4) pH 3 to pH 1
9. The pH of a solution changes from 4 to 3 when the hydrogen ion concentration in the solution is
(1) decreased by a factor of 100
(2) decreased by a factor of 10
(3) increased by a factor of 100
(4) increased by a factor of 10
10. Solution A has a pH of three and solution Z has a pH of six How many times greater is the hydronium ion concentration in solution A than the hydronium ion concentration in solution Z ?
(1) 100
(2) 3
(3) 2
(4) 1000
11. What is the pH of a solution that has a hydronium ion concentration 100 times greater than a solution with a pH of 4 ?
(1) 5
(2) 3
(3) 2
(4) 6

Indicators

How to use Table M:

$>$ If the pH is below the first number, the solution will be the first color listed
$>$ If the pH is above the second number, the solution will be the second color listed
> If the pH is between the numbers, the solution will be a mix of the two colors
Ex: If you add bromthymol blue... to a solution with a pH of 8 , it will be blue to a solution with a pH of 7 , it will be green to a solution with a pH of 5 , it will be yellow

1. Which indicator, when added to a solution, changes color from yellow to blue as the pH of the solution is changed from 5.5 to 8.0 ?
(1) bromcresol green
(2) bromthymol blue
(3) litmus
(4) methyl orange
2. Which indicator would best distinguish between a solution with a pH of 3.5 and another with a pH of 5.5 ?
(1) bromthymol blue
(3) litmus
(2) bromcresol green
(4) thymol blue
3. In which solution will bromcresol green appear blue?
(1) 1 M NaCl
(3) $1 \mathrm{M} \mathrm{NH}_{3}$
(2) $1 \mathrm{M} \mathrm{H}_{2} \mathrm{CO}_{3}$
(4) $1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$
4. In which solution will thymol blue indicator appear blue?
(1) $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$
(3) 0.1 M KOH
(2) 0.1 M HCl
(4) $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
5. What is the color of the indicator methyl orange in a solution that has a pH of 2 ?
(1) blue
(3) yellow
(2) orange
(4) red
6. In a solution with a pH of 3 , what color is bromcresol green?
(1) yellow
(3) green
(2) blue
(4) red
7. At what pH will bromothymol blue be yellow and bromocrescol green be blue?
(1) 10.5
(2) 5.7
(3) 7.0

Lesson 4: Neutralization and Titrations

Objective:

- Describe a neutralization reaction
- Calculate the concentration of an unknown acid or base using the titration formula

Neutralization

When an acid and base react, it is a _ D \qquad _R \qquad reaction with the products being \qquad and \qquad .

Neutralization Reactions: If equal mole amounts of acid and base are added together, the resulting solution is NEUTRAL!

Example:

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

1. Predict the products of and balance the following reactions (remember cation comes first in a compound):

$$
\begin{aligned}
& \ldots \mathrm{HF}(\mathrm{aq})+\ldots \mathrm{LiOH}(\mathrm{aq}) \rightarrow \ldots \ldots \ldots(\mathrm{aq})+\ldots \mathrm{HOH}(\mathrm{l}) \\
& \ldots \mathrm{HNO}_{3}(\mathrm{aq})+\ldots \mathrm{KOH}(\mathrm{aq}) \rightarrow \\
& \text { (aq) }+ \\
& \text { HOH (l) } \\
& \ldots \mathrm{HCl}(\mathrm{aq})+\ldots \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \\
& \text { (aq) + __ } \mathrm{HOH}(\mathrm{l}) \\
& \mathrm{HClO}_{3}(\mathrm{aq})+\ldots \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \\
& \text { (aq) }+ \\
& \text { HOH (l) } \\
& \ldots \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\ldots \mathrm{NaOH}(\mathrm{aq}) \rightarrow \\
& \text { (aq) }+ \\
& \text { HOH (l) }
\end{aligned}
$$

2. What are the products of a reaction between $\mathrm{KOH}(\mathrm{aq})$ and $\mathrm{HCl}(\mathrm{aq})$?
(1) H_{2} and KClO
(3) $\mathrm{H}_{2} \mathrm{O}$ and KCl
(2) KH and HClO
(4) KOH and HCl
3. Which word equation represents a neutralization reaction?
(1) base + acid \rightarrow salt + water
(2) base + salt \rightarrow water + acid
(3) salt + acid \rightarrow base + water
(4) salt + water \rightarrow acid + base
4. Which compound could serve as a reactant in a neutralization reaction?
(1) NaCl
(3) $\mathrm{CH}_{3} \mathrm{OH}$
(2) KOH
(4) $\mathrm{CH}_{3} \mathrm{CHO}$
5. Which substance can be a product when an Arrhenius acid in an aqueous solution reacts with an Arrhenius base in an aqueous solution?
(1) HBr
(3) KBr
(2) $\mathrm{H}_{2} \mathrm{O}$
(4) KOH
6. Which reactants form the salt $\mathrm{CaSO}_{4}(\mathrm{~s})$ in a neutralization reaction?
(1) $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ and $\mathrm{Ca}\left(\mathrm{ClO}_{4}\right)_{2}(\mathrm{~s})$
(2) $\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})$ and $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$
(3) $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ and $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})$
(4) $\mathrm{SO}_{2}(\mathrm{~g})$ and $\mathrm{CaO}(\mathrm{s})$
7. Sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$, can be used to neutralize barium hydroxide, $\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})$. What is the formula for the salt produced by this neutralization?
(1) BaS
(3) BaSO_{3}
(2) BaSO_{2}
(4) BaSO_{4}
8. Which chemical equation represents the reaction of an Arrhenius acid and an Arrhenius base?
(1) $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}$ (l)
(2) $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}$ (l)
(3) $\mathrm{Zn}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
(4) $\mathrm{BaCl}_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})+2 \mathrm{NaCl}(\mathrm{aq})$

Titrations are procedures used to determine the concentration (M) of an acid or a base. You combine together an acid and a base knowing the volume of each and the concentration of only one of them.

1. What number would be at the top of the buret?
2. Read the volume of the base in the buret.
3. If the buret holds 50 mL , how much base is actually in the buret?
4. If a student started at 2.0 mL and released base until it was at the level shown, how much bases was added?
5. Why is it not necessary to subtract all vour volumes from

Titration Problems

1. A $25.0-$ milliliter sample of $\mathrm{HNO}_{3}(\mathrm{aq})$ is neutralized by 32.1 milliliters of $0.150 \mathrm{M} \mathrm{KOH}(\mathrm{aq})$. What is the concentration of the acid?
2. How many milliliters of 0.200 M NaOH are needed to neutralize 100 mL of 0.100 M HCl ?
3. In a titration, 20.0 milliliters of $0.15 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ is exactly neutralized by 18.0 milliliters of $\mathrm{KOH}(\mathrm{aq})$.
(a) Complete the equation below for the neutralization reaction by writing the formula of each product.
$\mathrm{KOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow+\ldots$
(b) Compare the number of moles of $\mathrm{H}^{+}(\mathrm{aq})$ ions to the number of moles of $\mathrm{OH}^{-}(\mathrm{aq})$ ions in the titration mixture when the $\mathrm{HCl}(\mathrm{aq})$ is exactly neutralized by the $\mathrm{KOH}(\mathrm{aq})$.
(c) Determine the concentration of the $\mathrm{KOH}(\mathrm{aq})$.
(d) What is the new pH of the solution?
4. In a laboratory activity, 0.500 mole of $\mathrm{NaOH}(\mathrm{s})$ is completely dissolved in distilled water to form 400. milliliters of $\mathrm{NaOH}(\mathrm{aq})$. This solution is then used to titrate a solution of $\mathrm{HNO}_{3}(\mathrm{aq})$.
(a) Identify the negative ion produced when the $\mathrm{NaOH}(\mathrm{s})$ is dissolved in distilled water.
(b) Calculate the molarity of the $\mathrm{NaOH}(\mathrm{aq})$. Your response must include both a correct numerical setup and the calculated result.
(c) If 26.4 milliliters of the NaOH solution is needed to exactly neutralize 44.0 milliliters of the HNO_{3} solution, what is the molarity of the HNO_{3} solution?
(d) Complete the equation below representing this titration reaction by writing the formulas of the products.

$$
\mathrm{NaOH}(\mathrm{aq})+\mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow
$$

\qquad $+$ \qquad

Adjustment for multiple \mathbf{H}^{+}or $\mathbf{O H}$:

$$
\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{PO}_{4}^{-3} \quad \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{SO}_{4}^{-2}
$$

What happens when an acid has two or more hydrogen atoms? Do they just lose one? Strong acids completely ionize leaving no hydrogen atoms in the anion or conjugate base. This means we need to amend out titration formula for these special acids to include all the acidic ions that come off.

$$
\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{OH}^{-}+\mathrm{Ca}^{+2} \quad \mathrm{Mg}(\mathbf{O H})_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathbf{2 O H}+\mathbf{M g}^{+2}
$$

Similarly, what happens when a base has two or more hydroxide ions? Do they just lose one? Strong bases completely ionize leaving no hydroxide ions in the cation. This means we need to amend our titration formula for these special bases to include all the basic ions that come off.

The $\mathrm{M}_{\mathrm{a}} \mathrm{V}_{\mathrm{a}}=\mathrm{M}_{\mathrm{b}} \mathrm{V}_{\mathrm{b}}$ formula will have coefficients in front of the M corresponding to the number of H^{+}or OH^{-} in the acid and base formula.

Example: If 35.0 mL of $3.00 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ is neutralized by 50.0 mL of $\mathrm{Ca}(\mathrm{OH})_{2}$, what is the molarity of the base?

$$
\begin{aligned}
& M_{a} V_{a}=M_{b} V_{b} \quad \text { becomes } \quad\left(\# H^{+}\right)\left(M_{a} V_{a}\right)=\left(\# \mathrm{OH}^{-}\right)\left(M_{b} V_{b}\right) \\
& 3(3)(35)=2(x)(50) \\
& x=3.15 \mathrm{M}
\end{aligned}
$$

1. If 65.0 mL of $1.50 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ is neutralized by 25.0 mL of $\mathrm{Ca}(\mathrm{OH})_{2}$, what is the molarity of the base?
2. If 15.0 mL of $3.50 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is neutralized by 25.0 mL of $\mathrm{Mg}(\mathrm{OH})_{2}$, what is the molarity of the base?
3. If 150.0 mL of $4.50 \mathrm{M}_{\mathrm{HNO}}^{3}$ is neutralized by $3.00 \mathrm{M} \mathrm{Mg}(\mathrm{OH})_{2}$, what is the volume of the base added?
4. If $25.5 \mathrm{~mL} \mathrm{H}_{3} \mathrm{PO}_{4}$ is neutralized by 50.0 mL of 2.00 M LiOH , what is the molarity of the acid?
5. If 35.0 mL of $\mathrm{H}_{2} \mathrm{CO}_{3}$ is neutralized by 50.0 mL of 1.50 M KOH , what is the molarity of the acid?
6. If 6.00 M HI is neutralized by 50.0 mL of 4.50 M RbOH , what is the volume of the acid added?

More Practice:

1. A 25.0 -milliliter sample of $\mathrm{HNO}_{3}(\mathrm{aq})$ is neutralized by 32.1 milliliters of $0.150 \mathrm{M} \mathrm{KOH}(\mathrm{aq})$. What is the molarity of the $\mathrm{HNO}_{3}(\mathrm{aq})$?
2. A 25.0 mL sample of 5.00 M HCl is required to neutralize 34.5 mL of NaOH solution, what is the concentration of the NaOH solution?
3. A total of 50.0 mL of 0.50 M KOH solution completely neutralizes 125 mL of hydrobromic acid solution (HBr). Calculate the concentration of the HBr solution.
4. What volume of $0.10 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ exactly neutralizes 15.0 milliliters of $0.20 \mathrm{M} \mathrm{HNO}_{3}(\mathrm{aq})$?

Regents Practice: Titrations

1. What are the products of a reaction between $\mathrm{KOH}(\mathrm{aq})$ and $\mathrm{HCl}(\mathrm{aq})$?
(1) H_{2} and KClO
(2) $\mathrm{H}_{2} \mathrm{O}$ and KCl
(3) KH and HClO
(4) KOH and HCl
2. Which word equation represents a neutralization reaction?
(1) base + acid \rightarrow salt + water
(2) base + salt \rightarrow water + acid
(3) salt + acid \rightarrow base + water
(4) salt + water \rightarrow acid + base
3. Which compound could serve as a reactant in a neutralization reaction?
(1) NaCl
(3) $\mathrm{CH}_{3} \mathrm{OH}$
(2) KOH
(4) $\mathrm{CH}_{3} \mathrm{CHO}$
4. Which substance is always a product when an Arrhenius acid in an aqueous solution reacts with an Arrhenius base in an aqueous solution?
(1) HBr
(3) KBr
(2) $\mathrm{H}_{2} \mathrm{O}$
(4) KOH
5. Which reactants form the salt $\mathrm{CaSO}_{4}(\mathrm{~s})$ in a neutralization reaction?
(1) $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ and $\mathrm{Ca}\left(\mathrm{ClO}_{4}\right)_{2}$ (s)
(2) $\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})$ and $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$
(3) $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ and $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})$
(4) $\mathrm{SO}_{2}(\mathrm{~g})$ and CaO (s)
6. Sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$, can be used to neutralize barium hydroxide, $\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})$. What is the formula for the salt produced by this neutralization?
(1) BaS
(3) BaSO_{3}
(2) BaSO_{2}
(4) BaSO_{4}
7. Which chemical equation represents the reaction of an Arrhenius acid and an Arrhenius base?
(1) $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{NaOH} \rightarrow \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$
(2) $\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
(3) $\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$
(4) $\mathrm{BaCl}_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+2 \mathrm{NaCl}$
8. Which volume of $0.10 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ exactly neutralizes 15.0 milliliters of $0.20 \mathrm{M} \mathrm{HNO}_{3}(\mathrm{aq})$?
(1) 1.5 mL
(3) 3.0 mL
(2) 7.5 mL
(4) $30 . \mathrm{mL}$
9. In which laboratory process could a student use $0.10 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ to determine the concentration of an aqueous solution of HBr ?
(1) chromatography
(2) decomposition of the solute
(3) evaporation of the solvent
(4) titration
10. The data collected from a laboratory titration are used to calculate the
(1) rate of a chemical reaction
(2) heat of a chemical reaction
(3) concentration of a solution
(4) boiling point of a solution
11. Which volume of $0.10 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ exactly neutralizes 15.0 milliliters of $0.20 \mathrm{M} \mathrm{HNO}_{3}(\mathrm{aq})$?
(1) 1.5 mL
(3) 3.0 mL
(2) 7.5 mL
(4) $30 . \mathrm{mL}$
12. What volume of $0.120 \mathrm{M} \mathrm{HNO}_{3}(\mathrm{aq})$ is needed to completely neutralize 150.0 milliliters of 0.100 M $\mathrm{NaOH}(\mathrm{aq})$?
(1) 62.5 mL
(3) $180 . \mathrm{mL}$
(2) 125 mL
(4) $360 . \mathrm{mL}$
